Regeneration of meniscus cartilage in a knee treated with percutaneously implanted autologous mesenchymal stem cells.
نویسندگان
چکیده
Mesenchymal stem cells are pluripotent cells found in multiple human tissues including bone marrow, synovial tissues, and adipose tissues. They have been shown to differentiate into bone, cartilage, muscle, and adipose tissue and represent a possible promising new therapy in regenerative medicine. Because of their multi-potent capabilities, mesenchymal stem cell (MSC) lineages have been used successfully in animal models to regenerate articular cartilage and in human models to regenerate bone. The regeneration of articular cartilage via percutaneous introduction of mesenchymal stem cells (MSC's) is a topic of significant scientific and therapeutic interest. Current treatment for cartilage damage in osteoarthritis focuses on surgical interventions such as arthroscopic debridement, microfracture, and cartilage grafting/transplant. These procedures have proven to be less effective than hoped, are invasive, and often entail a prolonged recovery time. We hypothesize that autologous mesenchymal stem cells can be harvested from the iliac crest, expanded using the patient's own growth factors from platelet lysate, then successfully implanted to increase cartilage volume in an adult human knee. We present a review highlighting the developments in cellular and regenerative medicine in the arena mesenchymal stem cell therapy, as well as a case of successful harvest, expansion, and transplant of autologous mesenchymal stem cells into an adult human knee that resulted in an increase in meniscal cartilage volume.
منابع مشابه
Stem cell therapy in a caprine model of osteoarthritis.
OBJECTIVE To explore the role that implanted mesenchymal stem cells may play in tissue repair or regeneration of the injured joint, by delivery of an autologous preparation of stem cells to caprine knee joints following induction of osteoarthritis (OA). METHODS Adult stem cells were isolated from caprine bone marrow, expanded in culture, and transduced to express green fluorescent protein. OA...
متن کاملIncreased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells.
BACKGROUND The ability to repair tissue via percutaneous means may allow interventional pain physicians to manage a wide variety of diseases including peripheral joint injuries and osteoarthritis. This review will highlight the developments in cellular medicine that may soon permit interventional pain management physicians to treat a much wider variety of clinical conditions and highlight an in...
متن کاملMesenchymal or Maintenance Stem Cell & Understanding their Role in Osteoarthritis of the Knee Joint: A Review Article
Mesenchymal Stem Cell (MSC) therapy in osteoarthritis has been hailed as a promising treatment for osteoarthritis dueto their unlimited potential of healing and regeneration. Existing literature regarding their proper name, optimal sources,mechanisms of action, dosage, and route of administration, efficacy, and safety is debatable. This index review articlehas tried to connect...
متن کاملIncreased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells, platelet lysate and dexamethasone
Case Report: A study patient’s mesenchymal stem cells were obtained from her iliac crest bone marrow, isolated and expanded in culture. They were then injected into her knee along with autologous platelet lysate to enhance growth, and nanogram doses of dexamethasone to promote differentiation to chondrocytes. Pre and post treatment MRI imaging, physical therapy and pain score data were then ana...
متن کاملConditioned medium derived from mesenchymal Stem cells regenerates’ defected articular cartilage
Background & Aims: One of cell- based technical issues associated with cartilage repair assay is delivering cells to the site of the parts where damage is created. Mesenchymal stem cells (MSCs) with their chondrogenic potential are ideal candidates for cartilage regeneration. High expression of cartilage hypertrophy markers by MSCs would result in apoptosis and ossification. This investigation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical hypotheses
دوره 71 6 شماره
صفحات -
تاریخ انتشار 2008